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Abstract
This paper reports on a study of the motion of moving space curves induced
from integrable equations having variable spectral parameters. We explain
the geometric structure of the curves using the associated linear equations of
integrable equations. A generalized form of the Hasimoto transformation is
introduced. This form relates the curvature and torsion of the curves to the
variables of integrable equations. Some explicit curve motions, including the
solitonic and Kelvin-type curves, are calculated using the Sym–Tafel formula.

PACS numbers: 47.32.Cc, 02.30.Gp, 67.57.Fg

1. Introduction

There are many nonlinear problems in physics that can be described by moving helical space
curves [1]. Interestingly, some important curve motions are related to the famous integrable
equations. For example, an isolated thin vortex filament in a fluid can be described by
the nonlinear Schrödinger equation (NLSE) through the Hasimoto transformation [2]. The
Hasimoto transformation relates the curvature and torsion of curves to the amplitude and phase
of the variable of integrable equations. Another example is the problem of spin dynamics of
the Heisenberg ferromagnet(HF) model. Lakshmanan was first to show that the continuum
dynamics of the HF model is gauge equivalent to the NLSE [3]. Here, spin motion is related
to the tangent vector of the curve of the vortex filament. Lamb extended the result obtained by
Hasimoto. Lamb investigated the connection between the sine-Gordon and Hirota equations
with the motion of certain helical curves [4]. More recently, [5] and [6] related the modified
Korteweg–de Vries (mKdV) equation to motions of curves in a plane. In all of these studies,
the Hasimoto transformation was important in providing connections between the nonlinear
dynamics of moving curves and the corresponding integrable equations.
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Another interesting development in investigating the problems of moving space curves
is the Sym–Tafel formula. This formula associates the coordinate of space curves with the
solution of the linear problem of corresponding integrable equations [7]. Various problems of
space curves mentioned above have been reformulated using the Sym–Tafel formula. Also,
some explicit form of curves has been constructed using this formula [8, 9]. It includes all the
previously mentioned problems as well as the Lund–Regge vortex motions which have been
described by the complex sine-Gordon equation [10, 11].

The construction of the completely integrable inhomogeneous equations has been an
important development in nonlinear problems [12, 13]. Obviously, they are more realistic
and appropriate in describing real physical situations [14–16] such as the problems of space
curves moving in an inhomogeneous and/or imperfectly smooth space. Some inhomogeneous
integrable equations have been constructed using various methods such as (1) integrable
equations having a variable spectral parameter [17, 18] or (2) guessing integrable equations
having inhomogeneous terms and then checking the integrability of them using the Painlevè
test [18–20], or (3) Darboux covariant construction of inhomogeneous integrable equations
[21, 22]. These inhomogeneous theories were applied to real nonlinear problems, for example,
the dc and ac conductivity of one-dimensional condensates described by the so-called damped,
driven NLSE, and the reduced Maxwell–Bloch system with pumping or with a damping of a
special type.

It would be interesting to consider space curve problems, which are related to
inhomogeneous integrable equations. In fact, publications have already appeared on some
studies of this topic. A classical inhomogeneous Heisenberg chain having site-dependent
interaction has been shown to be described by an integro-differential NLSE [23]. More
recently, using the Lamb formalism, Porsezian systematically derived various NLSE-
type integrable equations such as derivative NLSE, higher order NLSE, inhomogeneous
NLSE, and inhomogeneous radially symmetric NLSE, which can be connected with certain
inhomogeneous curve problems [24]. However, their corresponding curve equations, as well
as their associated linear equations, were not given explicitly in [24]. In this respect, a more
systematic investigation of the inhomogeneous curve problems would be required.

In our research and now presented in this paper, we have used the Sym–Tafel formula to
investigate curve motions moving in an inhomogeneous space, starting from the associated
linear problems of integrable equations having variable spectral parameter. Equations of curve
motion, which have specific spacetime dependence, have been constructed. Some of their
solutions have been calculated, including the Kelvin-type and solitonic curves.We introduce
a generalized form of Hasimoto transformation. This shows that the constructed curves have
nontrivial curvature and torsion. Torsions have spacetime dependences, which are inherited
from the spacetime dependence of variable spectral parameters. By using the Lamb formalism,
we show that the space curve problems can induce various integrable equations having variable
spectral parameter. We note that there is a soliton surface theory constructed on a integrable
equation having variable spectral parameter [25]. Though the spirit of [25] is similar to ours,
the results of our present research presented in this paper, including a generalized Hasimoto
transformation, contain unique features from the approach of the space curve problem.

2. Space curves from integrable equations having variable spectral parameter

2.1. Integrable equations having variable spectral parameter

Consider a two-dimensional integrable system defined by the Lax pair in terms of 2 × 2
matrices Ui(ψ), Vi(ψ):
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∂x� =
1∑

m=0

λ(x, t)mUm� ≡ U�,

∂t� =
b∑

n=−a

λ(x, t)nVn� ≡ V �,

(1)

where ∂x ≡ ∂/∂x, ∂t ≡ ∂/∂t and λ(x, t) is the variable spectral parameter. In this paper, we
consider the case where

U1 = i

(
1 0
0 −1

)
, U0 =

(
0 �

−�∗ 0

)
, (2)

such that

U = iλ(x, t)

(
1 0
0 −1

)
+

(
0 �

−�∗ 0

)
. (3)

Here �(x, t) denotes the variable of integrable equations. Integers a, b in equation (1) are
chosen appropriately for specific integrable equation. The variable spectral parameter λ(x, t)

satisfies certain relations of the type

∂xλ(x, t) =
1∑

m=0

λ(x, t)mαm, ∂tλ(x, t) =
b∑

n=−a

λ(x, t)nβn (4)

and thus has explicit dependence on x and t . The compatibility of two equations in equation (1)
for any value of λ(x, t) requires

∂tUk − ∂xVk +
∞∑

m=−∞
([Um, Vk−m] + mβk+1−mUm − mαk+1−mVm) = 0. (5)

Here we have extended our notation so that Um = αm = 0, for m < 0 or m > 1, and
Vn = βn = 0 for n < −a or n > b. Equation (5) gives constraints on Vm, αm, βm for k �= 0
(or k �= −1 for Maxwell–Bloch equation), while it becomes the equation of motion at k = 0
(or k = −1 for Maxwell–Bloch equation).

Here we give some examples of Vm, αm, βm which will be considered in this paper [12].

Example 1: the NLSE

For this equation, we take a = 0, b = 2 and

V = −2λ(x, t)2U1 − 2λ(x, t)U0 +

(
i|�|2 + 2i

∫ |�|2
x

dx i∂x� + i�
x

i∂x�
∗ + i�∗

x
−i|�|2 − 2i

∫ |�|2
x

dx

)
. (6)

The variable spectral parameter satisfies equation (4) with α1 = 1/x, β2 = −4/x, α0 = β1 =
β0 = 0, i.e.,

∂xλ(x, t) = λ(x, t)

x
, ∂tλ(x, t) = − 4

x
λ(x, t)2. (7)

Thus λ(x, t) is given by

λ(x, t) = x

4(µ + t)
, (8)

where µ is a constant, which is the hidden spectral parameter. In the present consideration,
λ(x, t) is related to the torsion of curves, and it should take a real value. In the same reason,
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µ takes also a real value. The compatibility equation (5) is satisfied at k = 1, 2 with Vm, αm, βm

in equations (4), (7), while it becomes the NLSE having variable spectral parameter at k = 0;

i∂t� + ∂2
x� +

1

x
∂x� + 2|�|2� − �

x2
+ 4�

∫ |�|2
x

dx = 0. (9)

Example 2: the mKdV equation

For this equation, we take a = 0, b = 3, and � is taken to be real, � = �∗. The V

matrix is

V = 4λ(x, t)3xU1 + 4λ(x, t)2xU0 + 2iλ(x, t)

(
−∂x

(
x

∫
�2 dx

) −∂x(x�)

−∂x(x�) ∂x

(
x

∫
�2 dx

)
)

+

(
0 −∂2

x (x�) − 2�∂x

(
x

∫
�2 dx

)
∂2
x (x�) + 2�∂x

(
x

∫
�2 dx

)
0

)
. (10)

Equation (4) in this case is given by (αi = 0, β3 = 4, β2 = β1 = β0 = 0)

∂xλ(x, t) = 0, ∂tλ(x, t) = 4λ(x, t)3, (11)

such that

λ(x, t) = 1√−8(µ + t)
. (12)

In the present formalism, λ(x, t) is real and t < −µ. The compatibility equation (5) at k = 0
becomes the mKdV equation with variable spectral parameter;

∂t� + ∂3
x (x�) + 2∂x

(
�∂x

(
x

∫
�2 dx

))
= 0, (13)

while other compatibility equations are satisfied with V in equation (10) and λ(x, t) in
equation (11).

Example 3: the Maxwell–Bloch equation

This equation corresponds to taking a = 1, b = −1 and

V = 1

4iλ(x, t)

(
� ρ

ρ∗ −�

)
≡ 1

4iλ(x, t)
M, (14)

where � and ρ denote the probability amplitude of the ground state and excited state
respectively. � denotes the optical pulse. Reference [12, 26] introduces various possible
forms for αm, βm. Here, as an example, we take

∂xλ(x, t) = 0, ∂tλ = c

λ(x, t)
, (15)

such that

λ(x, t) =
√

µ + 2ct. (16)

c is a constant related to the pumping in the Maxwell–Bloch system. The compatibility
equation (5) at k = 0 and k = −1 becomes the Maxwell–Bloch equation with variable
spectral parameter;

2∂t� + ρ = 0, ∂x� + 4c − (ρ�∗ + ρ∗�) = 0, ∂xρ + 2�� = 0. (17)
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2.2. The Serret–Frenet equation from the Sym–Tafel formula

Now we introduce a generalized form of Sym–Tafel formula, which writes down the curve
variable r in terms of � in equation (1) [7, 8]. Then we show that one of the Lax equation,
∂x� = U�, implies the Serret–Frenet equation. Originally, the Sym–Tafel formula was
introduced to integrate the moving frame of integrable surfaces of given geometric properties.
In the present formalism, it will be used to relate � with a point on a single curve in space at
a time. First we introduce two functions J (x) and K(t), which results from

∂λ(x, t)

∂µ
= J (x)K(t), (18)

where µ is the hidden spectral parameter in equations (8), (12) and (16). Let us define a matrix
r from the position vector r ≡ (r1, r2, r3) such that r ≡ ∑

riσi, i = 1, 3, where σi are Pauli
matrices. (From now on, we will omit the summation notation. Please distinguish between
the vectors r, t, n, b and the matrices r, t̂ , n̂, b̂ in the following.) Let us relate r with � as

r = −i
1

K(t)
�−1 ∂

∂µ
� = −iJ (x)�−1 ∂

∂λ
�. (19)

To check that it gives the Serret–Frenet equation, we first introduce a new variable s =∫
J (x) dx. Now note that

∂sr ≡ ∂

∂s
r = 1

J (x)
∂xr = −i

J (x)K(t)

(
−�−1∂x��−1 ∂

∂µ
� + �−1 ∂

∂µ
(∂x�)

)

= −i

J (x)K(t)
�−1 ∂U

∂µ
� = �−1σ3�, (20)

where we use the Lax equation ∂x� = U� in the last step. In other words, the unit tangent
vector t = ∂sr ≡ (t1, t2, t3) is given by

t̂ ≡ tiσi = ∂sriσi = ∂sr = �−1σ3�. (21)

Note that ti ti = 1
2 Tr t̂2 = 1. This equation shows that the tangent vector t is given by the

rotation of k̂ (the unit vector along the z-axis), where the rotation is induced by the similarity
transformation of �. In a similar way, we find that

∂s t̂ = ∂2
s r = −[�−1∂s�,�−1σ3�] = 1

J (x)
�−1[U, σ3]�. (22)

Now, we parametrize the variable � as

� = 1
2J (x)κ(x, t) exp[iθ(x, t)]. (23)

Then equation (22) becomes

∂s t̂ = κ(x, t)�−1

(
0 exp[iθ(x, t)]

exp[−iθ(x, t)] 0

)
�. (24)

Equation (24) is one of the Serret–Frenet equations, ∂st = κn (κ is the curvature), when we
define the normal vector n ≡ (n1, n2, n3) as

n̂ ≡ niσi = �−1

(
0 exp[iθ(x, t)]

exp[−iθ(x, t)] 0

)
�. (25)

Thus, the normal vector n is given by the rotation of the following unit vector:

cos θ î − sin θ ĵ , (26)
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(î, ĵ are the unit vectors along the x and y-axes, respectively) induced by the similarity
transformation of �. It is clear that t and n are orthogonal to each other. Now,

∂sn̂ = 1

J (x)
�−1

( [(
0 exp[iθ(x, t)]

exp[−iθ(x, t)] 0

)
, U

]

+ i∂xθ

(
0 exp[iθ(x, t)]

exp[−iθ(x, t)] 0

) )
�

= 2λ(x, t) − ∂xθ

J (x)
�−1

(
0 −i exp[iθ(x, t)]

i exp[−iθ(x, t)] 0

)
− κ�−1σ3�, (27)

which gives another Serret–Frenet equation ∂sn = τb − κt, when we take the binormal vector
b ≡ (b1, b2, b3) as

b̂ ≡ biσi = �−1

(
0 i exp[iθ(x, t)]

−i exp[−iθ(x, t)] 0

)
�, (28)

and the torsion

τ = ∂xθ − 2λ(x, t)

J (x)
. (29)

In this case, the binormal vector b is given by the rotation of the following unit vector:

b = − sin θ î − cos θ ĵ . (30)

A distinguishing feature of the present formalism compared to the previous studies [23, 24] is
the appearance of spectral parameter λ(x, t) in the torsion τ . Finally, similar calculation gives

∂sb̂ = 2λ(x, t) − ∂xθ

J (x)
�−1

(
0 exp[iθ(x, t)]

exp[−iθ(x, t)] 0

)
�, (31)

which gives another Serret–Frenet equation, ∂sb = −τn. Note that all these relations show
the variable s = ∫

J (x) dx that correponds to the arc length along the curve constructed by
the Sym–Tafel formula in equation (19).

2.3. Equation of motion of space curves

The time dependence of r can be calculated as

∂t r = −i∂t

(
1

K(t)
�−1 ∂

∂µ
�

)
= −[∂t ln K(t)]r − i

1

K(t)
�−1 ∂V

∂µ
�

= −[∂t ln K(t)]r − iJ (x)�−1 ∂V

∂λ
�. (32)

Here we give the equations of motion for curves associated with the integrable equations
considered in the previous sections.

Example 1: the NLSE

By using equations (18) and (8), we can find J (x) = x,K(t) = −1/[4(µ + t)2] and
� = 1

2xκ(x, t) exp(iθ). Then equations (32) and (6) gives

∂t r = 2

µ + t
r − 4λ(x, t)xt̂ + x2κ(x, t)b̂, (33)

where t̂ and b̂ are given by equations (21) and (28). This equation can be written in terms of
the curve variable r,

∂tr = 2

µ + t
r − 4λx∂sr + x2∂2

s r × ∂sr = 2

µ + t
r − x

µ + t
∂xr +

1

x
∂2
x r × ∂xr. (34)
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This type of equation has been extensively studied with relation to the inhomogeneous
Heisenberg ferromagnet model [17]. Note the appearance of the hidden variable µ in the
equation of motion, which is the distinguishing feature of the present formalism compared to
the previous studies on the inhomogeneous Heisenberg ferromagnet model. The appearance
of µ in the following two systems related to the mKdV and Maxwell–Bloch equation seems
to be new also. But we want to note that the soliton surface study for surfaces of non-constant
curvature in [25] contains the hidden variable in its equation of motion. In the case of µ → ∞,
the equation of motion in equation (34) reduces to the following form

∂tr = x2∂2
s r × ∂sr = 1

x
∂2
x r × ∂xr, (35)

which is the conventional equation of motion, obtained from equation (9) using the standard
Hasimoto transformation. The generalized Hasimoto transformation and its relation with the
result in equation (34) will be explained in the following section.

Example 2: the mKdV equation

In this case, J (x) = 1,K(t) = 4/[−8(µ + t)]3/2 and � = �∗ = 1
2κ(x, t) (i.e. θ = 0).

Then equations (32) and (10) gives

∂t r = 3

2(µ + t)
r + 12λ2xt̂ − 4λκxb̂ − 1

2
∂x

(
x

∫
κ2 dx

)
t̂ − ∂x(xκ)n̂. (36)

This equation can be written in terms of the curve variable r as

∂tr = 3

2(µ + t)
r −

(
3x

2(µ + t)
+

1

2

∫
∂2
x r · ∂2

x r dx +
3

2
x∂2

x r · ∂2
x r

)
∂xr

− 6
x√−8(µ + t)

∂2
x r × ∂xr − ∂2

x r − x∂3
x r. (37)

As in the NLSE case, this equation has the µ → −∞ limit, which can be obtained from
equation (13) using the standard Hasimoto transformation.

Example 3: the Maxwell–Bloch equation

In this case, J (x) = 1,K(t) = 1/(2
√

µ + 2ct) and � = 1
2κ(x, t) exp(iθ). Then

equations (32) and (14) give

∂t r = c

µ + 2ct
r +

1

4λ2
�−1M�. (38)

Unlike the previous cases of NLSE and mKdV, the right-side part of equation (38) cannot be
written down in terms of r. Instead, we take here

∂x∂t r = ∂t∂xr = 1

4iλ
�−1[σ3,M]� = 1

4i
√

µ + 2ct
[∂xr, 4(µ + 2ct)∂t r − 4cr], (39)

where we use equation (38) in the last step. Conventional case of constant spectral parameter
can be obtained by taking c = 0.

2.4. Lamb formalism with the generalized Hasimoto transformation

In the previous sections, we obtain the equations of motion of space curves by using the
associated linear problem of the integrable equations. In this section, we reverse the process
and obtain the integrable equations by using the properties of space curves, especially the
three Serret–Frenet equations. This is the Lamb formalism, which investigated the equation
of motion of space curves and find their connection with the sine-Gordon and Hirota equation
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[4]. This work was an extension of the result obtained by Hasimoto, and used the Hasimoto
transformation which connects the curvature and torsion with the variable �.

We first introduce a generalized form of the Hasimoto transformation. Equations (23)
and (29) give

� = J (x)

2
κ(x, t) exp

[
i
∫

{2λ(x, t) + J (x)τ(x, t)} dx

]
, (40)

which reduces to the standard Hasimoto transformation by taking J (x) = 1 and λ = 0. Note
that the Hasimoto transformation relates the field variable �(x, t) of the integrable equation
to the curvature κ(x, t) and the torsion τ(x, t) at a point x on a single curve in space at a time t.
This point of view is still maintained in the present formalism. Following Lamb’s procedure,
we introduce

N = (n + ib) exp

[
i
∫

{2λ(x, t) + J (x)τ(x, t)} dx

]
. (41)

In a matrix form,

N = (n̂ + ib̂) exp

[
i
∫

{2λ(x, t) + J (x)τ(x, t)} dx

]

= (n̂ + ib̂) exp[iθ(x, t)] = 2�−1

(
0 0
1 0

)
�, (42)

where we have used equations (41), (25) and (28). Then, the three Serret–Frenet equations in
section 2.2 and equations (40), (41) give

∂xN = J (x)∂sN = −2�t + 2iλN, ∂xt = J (x)∂st = �∗N + �N∗. (43)

By using the properties N · N∗ = 2, N · t = N∗ · t = N · N = 0, the temporal evolutions of
t, n can be expressed as following,

∂tN = iRN + γ t, ∂t t = − 1
2 (γ ∗N + γ N∗), (44)

where the real R(x, t) and complex γ (x, t) will be determined as following. By equating
∂x∂tN = ∂t∂xN and ∂x∂t t = ∂t∂xt using equations (43) and (44), one finds

∂t� + 1
2∂xγ − i(λγ + R�) = 0, ∂xR = i(γ�∗ − γ ∗�) + 2∂tλ. (45)

By choosing explicit forms of R and γ , expressed in terms of � and its spatial variables,
such that they satisfy equation (45), we can obtain integrable equations having variable spectral
parameter. According to the choice of R and γ , various integrable equations can be resulted.
Here we show explicit forms of R and γ , which give the integrable equations of the previous
sections.

Example 1: the NLSE

The NLSE corresponds to taking

R = 4
∫ |�|2

x
dx + 2|�|2 − 4λ2, γ = −2i∂x� − 2i

�

x
+ 4λ�. (46)

Inserting these expressions into the second equation of (45) gives

4λ∂xλ + ∂tλ = 0, (47)

while the first equation gives(
∂xλ − λ

x

)
� = 0, (48)
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as well as the NLSE having the variable spectral parameter, equation (9). Note that there does
not appear any dependence on λ in the NLSE.

Example 2: the mKdV equation

This equation corresponds to taking

R = 8λ3x − 4λ∂x

(
x

∫
�2 dx

)
,

γ = 2∂2
x (x�) + 4�∂x

(
x

∫
�2 dx

)
+ 4iλ∂x(x�) − 8λ2x�.

(49)

Inserting these expressions into equations (45) gives

2i∂xλ∂x(x�) = 0, 8λ3 + 24λ2x∂xλ − 4∂xλ∂x

(
x

∫
�2 dx

)
= 2∂tλ, (50)

as well as the mKdV equation having the variable spectral parameter, equation (13).
Equations (50) give the two equations for λ(x, t) in equation (11).

Example 3: the Maxwell–Bloch equation

This equation corresponds to taking

R = − 1

2λ
�, γ = i

2λ
ρ. (51)

Inserting these expressions into equations (45) gives the equations for λ in equation (15), as
well as the Maxwell–Bloch equation having the variable spectral parameter, equation (17). In
fact, the second equation of (44) gives

∂t∂xr = i

2λ
�−1

(
0 −ρ

ρ∗ 0

)
� = − i

4λ
�−1[σ3,M]�, (52)

where we have used equation (42). Equation (52) is just the equation of motion for space
curve in equation (39).

In the above derivation, we can see that R and γ are related to the matrix elements of V

in equation (1). This fact can be easily understood when we note that equation (42) gives

∂tN = 2�−1

[(
0 0
1 0

)
, V

]
� = −2V1,2 t̂ + 2V1,1N, (53)

which gives γ = −2V1,2 and R = −2iV1,1. Similarly,

∂t t̂ = �−1[σ3, V ]� = V1,2N
∗ − V2,1N = −γ

2
N∗ − γ ∗

2
N. (54)

3. Curve motions

3.1. Kelvin-type curve

In this section, we will describe the Kelvin-type curve motion induced from the NLSE. The
Kelvin-type motion in the curve dynamics corresponds to the solution of plane-wave type �

in the integrable equations. In the NLSE case,

� = i
k

x
exp

(
i

x2

4t + α

)
, (55)

where α and k are constants. The corresponding solution in the curve dynamics is obtained
as following. First we determine � for the nontrivial solution � in equation (55). To find the
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solution � of the linear equation (1), we first define �̂ ≡ �−1
0 � where

�0 =
(

exp
(

i
2η

)
0

0 exp
(− i

2η
)
)

, η = x2

4t + α
. (56)

Then the linear equation (1) is rewritten as a linear equation for �̂,

∂x�̂ − i
k

x

(
σ1 − x2(4µ − α)

4(µ + t)(4t + α)k
σ3

)
�̂ = 0

∂t �̂ + i
k(4µ + 8t + α)

2(µ + t)(4t + α)

(
σ1 − x2(4µ − α)

4(µ + t)(4t + α)k
σ3

)
�̂ = 0.

(57)

It is now easy to integrate equation (57), which results in

�̂ =
(

c1y
{
I− 1

2 + i
2 k(Y ) + I 1

2 + i
2 k(Y )

}
+ c2y

{
K− 1

2 + i
2 k(Y ) − K 1

2 + i
2 k(Y )

}
c1y

{
I− 1

2 + i
2 k(Y ) − I 1

2 + i
2 k(Y )

}
+ c2y

{
(K− 1

2 + i
2 k(Y ) + K 1

2 + i
2 k(Y )

}
)

, (58)

where y = x/
√

(µ + t)(4t + α), Y = −i(4µ − α)y2/8, and Iν,Kν are modified Bessel
functions. In the following, for simplicity, we treat the case c1 = 1, c2 = 0. A 2 × 2 regular
matrix �̂reg, which is also the solution of equation (1), can be constructed from the column
matrix �̂ in equation (58) as

�̂reg = N�

(
�̂1 −�̂∗

2

�̂2 �̂∗
1

)
, (59)

where N� is a normalization factor which makes Det(�̂reg) = 1. Explicitly,

�̂reg = N�

(
y
{
I− 1

2 + i
2 k(Y ) + I 1

2 + i
2 k(Y )

} −y
{
I− 1

2 − i
2 k(−Y ) − I 1

2 − i
2 k(−Y )

}
y
{
I− 1

2 + i
2 k(Y ) − I 1

2 + i
2 k(Y )

}
y
{
I− 1

2 − i
2 k(−Y ) + I 1

2 − i
2 k(−Y )

}
)

. (60)

Now, the space curve r is obtained using equation (19) with � = �0�̂reg. Explicitly, the
result is

r1 = 1

D

{
8k(µ + t)(4t + α)

α − 4µ
(AB + A∗B∗) + x2(A2 + A∗2 − B2 − B∗2)

}

r2 = −i

D

{
8k(µ + t)(4t + α)

α − 4µ
(AB − A∗B∗) + x2(A2 − A∗2 − B2 + B∗2)

}

r3 = 1

D

{
8k(µ + t)(4t + α)

α − 4µ
(|B|2 − |A|2) + 2x2(AB∗ + A∗B)

}
,

(61)

where A = I 1
2 + i

2 k(Y ), B = I− 1
2 + i

2 k(Y ) and D = 4(|A|2 + |B|2). This solution satisfies
the curve equation in equation (34), which is checked explicitly using the Mathematica.
Equation (61) gives the torsion and curvature κ = 2k/x2, τ = (α − 4µ)/[2(µ + t)(4t + α)].
They can also be obtained from � in equation (55) by using the generalized Hasimoto
transformation in equation (40). Figure 1 shows an example of Kelvin-type curve, which is
obtained by using Mathematica for parameters µ = k = α = 1.

3.2. Solitonic curves

The one-soliton solution of integrable equations having variable spectral parameter was
obtained using a generalized form of the Darboux transformation (DT) in [27]. Similarly,
we can use the DT to obtain new solution �[N] of the linear equation (1) corresponding to the
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Figure 1. Curve of Kelvin-type from the NLSE having variable spectral parameter: shape at t = 0
as x varies from − 5 to 5.

one-soliton �, from the trivial � which is the solution corresponding to � = 0. The DT is
given by

�[N] = S[λ − λ∗
1 − (λ1 − λ∗

1)P ]� ≡ S[λ − σ ]�, (62)

where S is introduced to make Det(�[N]) = 1. Here the projection operator P (P 2 = P) is
defined as

P = �1�
†
1

�
†
1�1

, (63)

where the column matrix �1 is a solution � of the linear equation in equation (1) at a specific
value of the DT parameter λ = λ1 [28]. By inserting these expressions into equation (1) with
Um → U [N]

m , Vn → V [N]
n ,� → �[N], we can obtain following relations,∑

λmU [N]
m (λ − σ) = (λ − σ)

∑
λmUm + (∂xS)S−1(λ − σ) + ∂x(λ − σ), (64)

and a similar relation for Vn. Equation (64) will be used to calculate the new one-solitonic
�[N] from the trivial solution � = 0. �[N] will be used to obtain the one-solitonic curve using
equation (19).

Here we explicitly calculate the space curves r and their curvatures and torsions
corresponding to the one-solitonic solutions of the integrable equations considered before.

Example 1: the NLSE

The solution � of the Lax equation (1) for the trivial solution � = 0 is

� =
(

exp[ixλ(x, t)/2]

− exp[−ixλ(x, t)/2]

)
. (65)

Then the projector P in equation (63) becomes

P =
(

1/[1 + exp(−2liY )] − 1
2 exp[i(lr + t)Y ] sech(4Y )

− 1
2 exp[−i(lr + t)Y ] sech(4Y ) 1/[1 + exp(2liY )]

)
, (66)

where the DT parameter is taken to be λ1 = x/[4(lr + ili + t)], (see equation (8)) and
Y = x2/

[
4
(
l2
i + l2

r + t2 + 2lr t
)]

. Then
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�[N] = S

(
�

[N]
1

�
[N]
2

)
,

�
[N]
1 = x

4
exp

[
i

x2

8(µ + t)

] (
1

µ + t
− 1

lr − ili + t

)
+

i

x
liY

(
exp

[
i

x2

8(µ + t)
+ liY

]

+ exp

[
−i

x2

8(µ + t)
+ i(lr + t)Y

])
sech(liY ),

�
[N]
2 = −x

4
exp

[
−i

x2

8(µ + t)

] (
1

µ + t
− 1

lr − ili + t

)
− i

x
liY

(
exp

[
−i

x2

8(µ + t)
− liY

]

+ exp

[
i

x2

8(µ + t)
− i(lr + t)Y

])
sech(liY ), (67)

with

S =
√

8
l2
i + l2

r + t2 + 2lr t

l2
i + l2

r + µ2 − 2lrµ

µ + t

x
, (68)

and λ and µ are related by equation (8). By evaluating U
[N]
0 using equations (64), (66), (62),

we obtain the one-soliton solution of NLSE,

�[N] = − 2

x
liY sech(liY ) exp[i(lr + t)Y ]. (69)

To obtain r using equation (19), we need a 2×2 regular matrix �reg. It can be constructed
from equation (67) as

�reg =
(

�
[N]
1 −�

[N]∗
2

�
[N]
2 �

[N]∗
1

)
, (70)

which also satisfies the Lax equation (1) with λ = x/[4(µ + t)] for real µ. Then equation (19)
gives

r1 = x2

2
− 4li(µ + t)2

l2
i + (lr − µ)2

tanh(liY ),

r2 = 4li(µ + t)2

l2
i + (lr − µ)2

sech(liY ) sin

[
l2
i + (lr − µ)(lr + t)

µ + t
Y

]
,

r3 = − 4li(µ + t)2

l2
i + (lr − µ)2

sech(liY ) cos

[
l2
i + (lr − µ)(lr + t)

µ + t
Y

]
.

(71)

Note that µ is resulted from the variable spectral parameter, and it characterizes the curve
equation. On the other hand, lr , li are parameters which characterize the one-soliton solution.
The curvature and torsion of the curve are κ = li sech(liY )

/(
l2
i + l2

r + t2 + 2lr t
)

and
τ = [

l2
i + (lr − µ)(lr + t)

]/[
2(µ + t)

(
l2
i + l2

r + t2 + 2lr t
)]

. They can also be obtained
from � in equation (69) by using the generalized Hasimoto transformation in equation (40).
Figure 2 shows an example of one-solitonic curve, which is obtained for parameters µ =
lr = 1, li = 10.

Example 2: the mKdV equation

A similar calculation as in the NLSE case gives following equations instead of
equation (67),

�
[N]
1 = exp(iλx)[λ + iβ tanh(2βx)] − iβ exp(−iλx) sech(2βx),

�
[N]
2 = exp(−iλx)[−λ + iβ tanh(2βx)] + iβ exp(iλx) sech(2βx),

(72)
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Figure 2. Curve of one-soliton induced from the NLSE having variable spectral parameter: shape
at t = 0 as x varies from −10 to 10.

with

S = 1√
2(λ2 + β2)

, (73)

where the DT parameter is λ1 ≡ iβ = iβ(t) = 1/
√−8(µ1 + t) for real µ1 satisfying −µ1 < t .

Here, λ = λ(t) = 1/
√−8(µ + t) in equation (12). This form of λ1 is required to have a real

one-soliton solution, �[N] = �[N]∗. In this case, the one-soliton solution is

�[N] = 2β(t) sech[2β(t)x]. (74)

Similar procedure as in the NLSE case gives

r1 = x − β(t) tanh[2β(t)x]

λ(t)2 + β(t)2
,

r2 = − β(t)

λ(t)2 + β(t)2
sech[2β(t)x] sin[2λ(t)x],

r3 = β(t)

λ(t)2 + β(t)2
sech[2β(t)x] cos[2λ(t)x].

(75)

The curvature of the curve is κ = 4β(t) sech[2β(t)x], while the torsion is τ = 2λ(t).

Example 3: the Maxwell–Bloch equation

The solution � of the Lax equation (1) for the trivial solution � = ρ = 0,� = −4cx is
again given by equation (65) without the factor 2, where λ(t) is given by equation (16). Then,
similar calculation as in the case of mKdV equation gives

�
[N]
1 = exp(iλx)[λ − α + iβ tanh(2βx)] − iβ exp(2iαx − iλx) sech(2βx),

�
[N]
2 = exp(−iλx)[−λ + α + iβ tanh(2βx)] + iβ exp(iλx − 2iαx) sech(2βx),

(76)

with

S = 1√
2(λ2 + β2 + α2 − 2λα)

, (77)

where the DT parameter is λ1 ≡ α + iβ = α(t) + iβ(t) = √
µ1 + 2ct for a complex µ1, while

λ = λ(t) = √
µ + 2ct for a real µ. The one-soliton solution is

�[N] = 4β(t) sech[2β(t)x] exp[2iα(t)x]. (78)



992 K H Han and H J Shin

Especially, equation (64) for V at λ−1 level gives

V
[N]
−1 = σV−1σ

−1 − cσ−1 + S−1∂tSλ, (79)

which gives the new �[N] and ρ[N],

�[N] = 4c

α2 + β2
[2β2x sech2(2βx) + β tanh(2βx)] − 4cx,

ρ[N] = − 4βc

α2 + β2
[2iαx − 1 + 2βx tanh(2βx)] exp(2iαx) sech(2βx),

(80)

where we have used equations (14), (62), (63), 76) and (77).
Similar procedure as in the case of mKdV equation gives r as in equation (75) with the

replacement λ(t) → λ(t)−α(t). The curvature of the curve is κ = 4β(t) sech[2β(t)x], while
the torsion is τ = 2[α(t) − λ(t)],

4. Discussion

In this paper, we have developed the ‘space curve’ formulation induced from integrable
equations having variable spectral parameters. The integrable equations and curve motions
are related through a generalized form of the Hasimoto transformation. This transformation
provides an explicit method to calculate curve motions moving in an inhomogeneous space.
The form of inhomogeneity is determined by the spacetime dependence of the variable spectral
parameter.

The present formalism can be easily adapted to describe the duality between the spin
motions and the integrable equations having variable spectral parameters. In fact, the curve
r is related to the spin S via S = ∂xr, which is just the unit tangent vector. Thus, by using
the present formalism, we can easily find the equations of the site-dependent Heisenberg spin
chain described by the inhomogeneous NLSE, which should generalize the equations of the
site-dependent Heisenberg chain in the literature by including the inhomogeneity related to
the variable spectral parameter [23].

Finally we note that a slight generalization of the present formulation could describe
the curve motions related to the Darboux covariant integrable system which has U2 and/or
U3 terms in the Lax pair U in equation (1) [29]. In this case, the Hasimoto transformation
should be generalized to a more complex form. The equation for the curve motion involves
inhomogeneous terms which, themselves, satisfy separate nonlinear equations. These types
of curve motions should be interesting as they include the solitonic configurations that can be
easily observed in nature. This will be reported in a separate manuscript.
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